Quick Start Guide to FlashFiler

Introduction

This guide is intended for new users to FlashFiler who are especially interested in converting
an existing Delphi application using TTables (probably with a Paradox (PX) backend) to one
with a FlashFiler (FF) Client/Server backend. Most of the material contained in this guide
came about from my own experiences in doing just such a task. Those experiences draw upon
a significant amount of material posted to the FF Newsgroup (NG) — an invaluable source of
information, tips and essentially real-time help (but more of that later).

This document is designed to get you up and running as quickly as possible with FF via the
technique of suck-and-see. The first section is about getting up to speed with the “simplest”
FF application — a single executable. (This is called using the embedded server and is the FF
way of compiling the database engine directly into an application resulting a single-exe for
distribution. No DLL’s, no server to install on-site and configure. Its even easier than Delphi
and the BDE — just compile and go.)

The section following that will get you quickly up and running with the full multi-user C/S
version of FF. It is not necessary to have read the section on the single-exe applications first.
Instructions are given on how to set up a generic data module to enable connection to a
remote server (remote server = you have ffServer.exe running separately to the main
application, usually on a different PC on your network) and then a brief discussion on how to
manage your project effectively within the IDE so that you do not fall foul of the dreaded
“connection to server no longer valid” message.

The document then has a brief discussion of ffServer settings and the terminology used in
FlashFiler. These bits come directly from postings to the NG by TP, TPX ers and some of the
more experienced FF users. Many thanks to everyone who participates in the NG — you have
all helped to make this document possible.

Regards,
Geoff.



A Single Exe Application — The Embedded Server

FF is a true client server DBMS. However, one of its many features is that the engine can be
compiled directly into a project so that your application can be distributed as a single exe
without the need to install, configure, and maintain the ffServer DBMS backend.

Tests have shown that over a wide range of database operations and table structures that an FF
application built this way (called an embedded server) is roughly 60% faster than a single exe
equivalent PX application. This is actually quite amazing as you would not expect a
Client/Server backend to outperform PX in single-exe mode. There are a couple of reasons
for this:

1. Client/Server architecture, being necessarily more robust and having more features than
PX, carries an overhead for this extra table integrity.

2. PX has been around for a longer time than FF and thus it is reasonable to expect that it
will show the benefit of being “tweaked” with all sorts of internal optimisations.

All things considered, if FF is faster than PX, and you have access to all the extra benefits of a
Client/Server DBMS, then its not surprising that it is recommended you consider using FF as
a total replacement for PX.

In this section we begin with a detailed step-by-step guide on setting up the data
communications for a single-exe application. This data module is developed so that it is
application independent. That is, once you have created the data module, you need only to
copy the resulting files to a new directory and then create a new project and include the data
module.

Setting up a FlashFiler Comms Data Module

In the Delphi IDE you will need to create a new project. Now follow these steps to create the
data module shown in the figure below:

J¥ DataModule2 =] E3
|ﬂ D atatdodule Comporents | Diata Diagraml
-} fiClient]
ﬂ ffDatabazel
ﬂ ffServerE nginel % %ﬂ
- fSessionT ffS erverE nging] ffClient!
d
it
ffSeszionl
2
fi0ratabazel
| /

Creating the FlashFiler Embedded Server Data Module

1. Create a new Data Module in the IDE.



2. Drop on an embedded server engine — this is the first component on the FlashFiler Server
tab of the VCL. Do not bother setting any properties.

3. Now add in turn client, session and database components (located on the FlashFiler Client
tab of the VCL) to the data module as shown in the figure above.

4. Connect the ffClient] component to the server engine (from the pull down list of the
ServerEngine property) and name the client, eg., clientl. The properties of the client
should now look as follows:

Object Inzpector, Project Manager
Ohject Inspector | Project Manager |
fiClient1: THClient =]

Properties | Events |

Active Falze

AutaClientt ame Falze

Cligntt ame clientl

|zD efaulk Falze

Y E= fiClient

PazzwordF etries 3

ServerEngine ffS erverk noginel

Tag ]

Timelut 10000

I zet ame

Wersion 2.0500
&1l shown

5. Connect the ffSessionl component to your client component (pull down list of the
ClientName property) and give it a name, eg., sessionl. The properties of your session
should now look as follows:

Object Inzpector, Project Manager
Object Inspectar | Project Marager |
ffSessiond: THSeszion LI

Fraperties | Eventgl
Active Falze
AutoSezzionMame  |Falze
CligntM ame cligntl
CommzE hainet ame | clisnt]
|20 efaulk Falze
M arne 23
SezzionM ame zeszion]
Tag ]
Timedut -1
Wersion 2.0500
&1 shown

6. Connect the ffDatabasel component to the session component (from the pull down list)
and give it a name, eg., databasel. Finally, you will need to point the AliasName property
to where your data tables reside, in this case, ’'ve got mine sitting in
D:\appsFF\benchmarks. Your database component should now look as follows:



Object Inzpector, Project Manager
Object Inspectar | Project Marager |

fi01atabaszel: THDatabase ;I
Froperties | Eventgl
Aliazh ame [:happzFFhbenchmarks
AutoD atabaseM ame| Falze
Connected Falze
D atabazeM ame ata
Excluzive
FailS afe Falze
M arne ffi0ratabasel
ReadOnly Falze
SezszionM ame zeszion]
Tag ]
Timeout -1
Werzion 2.0500
&1l shown

You are now ready to go! Its that straightforward! The only thing that you may want to do to
the data module is change the MaxRAM property setting of the server engine to a larger value
(obviously depends on your application) but I find 10 Meg is rather conservative and usually
up it to about 48 Meg. (Be aware, though, that if this exceeds the available memory on the
end user PC, then the windows OS will automatically swap it out to disk with its virtual
paging system — something I would recommend against!)

Making the single-exe application path independent

Finally, let’s add one final run-time enhancement to our data module so that the resulting exe
is not restricted the path coded into the AliasName property of the database component. That
is, let’s make the application automatically change this to point to the same path as the exe
itself (here we are assuming that the data tables will reside in the same directory as the exe).

Setting the path on execution of the application

1. Double-click into the onCreate event handler of the data module itself.
2. Enter the following code
ffDatabasel.aliasName:=getCurrentDir

That’s it. When the exe boots, the engine will set itself to current directory. If you want to
keep your data tables in a sub-directory away from the exe, then you would modify the above
to, for example, extractFilePath (paramStr (0) )+’ \data’ or wherever.

Caution and final notes

Ok, seems simple to here, doesn’t it? Well, it is. However, if you are not careful a few things
may come back to bite you. Here’s a list of cautions I have compiled over the months:



e Make sure you set the client component active property to false before compiling, testing
or distributing to end users. Why? Because otherwise the database component will try to
connect to the aliasName directory and it may not be the final one.

e Always open the data module as the first form in the IDE before doing anything else.
Otherwise your table and querry components will have nothing to connect to and you will
be wondering why the IDE has gone AWOL.

e Never, ever, EVER close the data module off whilst you are still working in the IDE —
even if you want to test-run the app. Leave it open at all times.

¢ Ditto, make sure you close off all your forms, and the comms data module last, before
exiting the IDE. If you are curious, just leave all your forms open and close down the IDE
— then start up again and see what happens....

e Make sure in your project options that the comms data module is the first form auto-
created. It (obviously) is not going to be the mainform, but it must be created before any
other form (unless you want to do a lot of extra programming — which I’ll let the
masochists discover for themselves).

That’s about all folks. As the old saying goes, have fun with it!



C/S Applications — Client application separate from the Server

In this section we set up a comms data module that you can use in any application that you are
going to deploy as a true C/S system. That is, you will need to install and configure the FF
server engine (ffServer.exe) on an appropriately designated file server. Your client
applications must then connect to this server with an appropriate transport protocol. In this
quick start guide I am only going to look at SUP (Single User Protocol) and TCP/IP
(Transport Control Protocol/Internet Protocol) FF models. You use SUP wherever a client
app is being run on the same workstation as ffServer and TCP/IP over a network (including
the Internet). TCP/IP can be run on the same workstation as ffServer, but the speed
advantages that come from using SUP are so significant that I strongly recommend you use
SUP as a matter of course when able to.

Setting up a FlashFiler Comms Data Module

In the Delphi IDE you will need to create a new project. Now follow these steps to create the
data module shown in the figure below:

4% DataModuled _ O]
Iﬂ D atatoduled Components | D ata Diagraml

ﬂ ffClient] .

ﬂ fD atabazel

ﬂ ffLegacyTranzport]
ﬂ FFRemateServerE nginel flLegacyT ranspart] fiClien

ﬂ FiSession %

FFRemoteServerEnginel  ffSessionl

-

—

s

E_cll
fi0 atabazel

=l

| 4

Creating the FlashFiler Embedded Server Data Module

1. Boot up the FF server engine on your workstation (located in, depending on your install
path chosen, XXX\FF2\BIN) and ensure that the SUP transport is started and an
appropriate alias has been created.

2. Now create a new Data Module in a project in the IDE.

3. Place a legacyTransport component from the FlashFiler Server tab of the VCL onto the
form. Set the transport protocol to ptSingleUser from the pull down list. The properties
should look as follows:



Object Inzpector, Project Manager

Ohbject Inspectar |pr.:.je.;1 Manacet |

flLegacyTranzport]: THLegacyT ranspart LI

Fropertiez | Events |

CommandHandler

Enabled Falze

EventlLog

EventLogEnabled |Falze
EventLogDptions  |[]

tode fitrmS end

M ame flLegacy T ransport]

Protocol tSinglel) ser
RezpondT oBroadcal Falze
Server ame Local
Tag ]
ThreadPool
Werzion 2.0500

|.-i‘-.II ghown

4. Grab a remoteServerEngine component, also on the FlashFiler Server tab of the VCL, and
add it to the data module. Connect it to the legacyTransport component by selecting from
the pull down list of the Transport property. The properties of your component should
now look as follows:

Object Inzpector, Project Manager

Ohbject Inspectar |pr.:.je.;1 Manacet |

FFRemateServerE nginet: TFFHetheSenLI
Fropertiez | E\rentgl
EventlLog
EventLogEnabled | Falze
|zRead0mnly Falze
M ame FFRemoteSererEnginel
ModuoSavelfg |Falze
Tag 1]
Tranzport ffl eqacyT ranzpart
Yersion |2 0500
&1 shown

5. Now add in turn client, session and database components (located on the FlashFiler Client
tab of the VCL) to the data module as shown in the first figure in this section above.

6. Connect the ffClient] component to your remote server engine (from the pull down list of
the ServerEngine property) and name the client, eg., clientl. You should have set 2
properties only. The properties of the client should now look as follows:



Object Inzpector, Project Manager
Object Inspectar | Project Marager |

fiClient1: THClient =]

Fraperties | Evants |

Active Falze
AutoClientMarne |Falze
Clierith ame
|zDefault True

M arne FfCligntl
PazswordRetriez | 3
ServerEngine FFRemaoteSererEnginel

Tag ]

Timelut 10000

| zer ame

Wersion 2.0500
&1l shown

7. Connect the ffSessionl component to your client component (pull down list of the
ClientName property) and give it a name, eg., cosmosSession (to stand out). Whatever
you do, do not leave the ClientName property blank or set to [ Automatic]. The properties
of your session should now look as follows:

Object Inzpector, Project Manager
Ohject Inspectar |F'r|:|jec1 Manager |
ffSezzion: TS eszsion LI
Properties | E\rentgl
Active Falze
AutoSezgionMame | Falze
Cligntt ame j
CommzE nginetame | clientl
|zCrefauilk True
= ffSeszionT
Sezziont ame COEMOESEssion
Tag 1]
Timelut 10000
Wersion 2.0500
&1 shown

8. Now comes the connections that seem to cause the most bother for programmers new to
FlashFiler. Connect the ffDatabasel component to the cosmosSession component (from
the pull down list) and give it a name, eg., cosmosDB (it is important that you do not
accidentally use an alias name here). Finally, you will need to select a name from the pull
down list of the AliasName property which will connect you to an alias that you have
already established in ffServer. (To the curious — for my performance benchmark tests, I
used an alias called “metricData”.) Your database component should now look as
follows:



Object Inzpector, Project Manager
Ohject Inspector |F'r|:|jec1 Manzcer |
ff0 atabaszel: THDatabaze LI

Fropertiez | E\rentgl

AliasH ame metricD ata
AutoD atabaseM ame | Falze
Connected Falze

[ atabazeM ame cozmozD B
Excluzsive Falze

Fail5 afe Falze

M ame [ atabasel
Feadlnly Falze
SezsionM ame

Tag

Timeout

Werzion

&1 shown

You are now ready to begin! Although more involved then setting up the comms for single
exe applications, its not really difficult. The server engine can now be configured external to
your client application (in the control front screen of ffServer).

Making the client executable independent of protocol setting

As with the single exe application, let’s add a run-time enhancement to our data module so
that the resulting client app is not restricted the protocol set when compiled. That is, let’s
make the application select which server to connect to on bootup.

Setting the FF server on execution of the application

1. Double-click into the onCreate event handler of the data module itself.

2. You will need to now read the preferred protocol. My first go at this resulted in the

following (inefficient!) code. I am in the process of changing this to more “standard”
Windows INI calls (and have suggestions for using exception calls), but for the moment,
just enter the following code (or your own once you have looked at this!)

var f:textFile;
st,pc:string;
connectedOK:boolean;
begin
randomize;
connectedOK:=false; {assume NOT able to connect to the flashfiler server}
if fileExists('cosmos.ini') then
begin
assignFile(f,'cosmos.ini');
reset(f);
try
if tag=1 then
begin
st:='"cmaFFremote’;



pc:="ptSingleUser'
end else
begin
readin(f,st);
readIn(f,pc)
end;
with fflLegacyTransport1 do
begin
if enabled then enabled:=false ;
connectedOK:=true;
if pc="ptTCPIP' then protocol:=ptTCPIP else
if pc="ptSingleUser' then protocol:=ptSingleUser else
begin
showMessage('Invalid protocol settin g. Value in ini file="+pc);
connectedOK:=false
end;
serverName:=st;
enabled:=true
end;
if connectedOK then
try
connectedOK: =false;
ffClient1.active:=true;
try
ffSession1.active:=true;
try
ffDatabase1.connected:=true;
connectedOK:=true
except
showMessage('Could not connect the Database to the remote FF server.')
end;
except
showMessage('Could not activate the Session component to the Client.")
end;
except
showMessage ('Could not activate the Client to the remote server engine.")
end;
except
showMessage ('Could not enable the Legacy Transport. Server name="+st);
end;
closeFile(f)
end else
begin
try
with fflLegacyTransport1 do
begin
if enabled then enabled:=false;
protocol:=ptRegistry;
enabled:=true
end;
connected OK:=true
except
showMessage('Could not find cosmos.ini nor a registry entry - PC needs fixing!");
connectedOK:=false
end
end;
if not connectedOK then
begin
application.terminate
end



That’s it. Oh, you will also need to add FFLLPROT to your uses clause. A typical ini file is
setup as follows:

To connect to a remote server using TCP/IP it will look like

myServer@192.168.0.1
ptTCPIP

or, to connect to a server on the same workstation as ffServer using SUP:
cmaFFremote
ptSingleUser

Caution and final notes

Pretty much the same set of notes applies here as with the embedded server.

Always boot up ffServer and bring up the server (usually set to automatic) before booting
up Delphi.

Make sure you set the client component active property to false before compiling, testing
or distributing to end users. Why? Because otherwise the database component will try to
connect to the aliasName directory and it may not be the final one.

Always open the data module as the first form in the IDE before doing anything else.
Otherwise your table and querry components will have nothing to connect to and you will
be wondering why the IDE has gone AWOL.

Never, ever, EVER close the data module off whilst you are still working in the IDE —
even if you want to test-run the app. Leave it open at all times.

Ditto, make sure you close off all your forms, and the comms data module last, before
exiting the IDE. If you are curious, just leave all your forms open and close down the IDE
— then start up again and see what happens....

Make sure in your project options that the comms data module is the first form auto-
created. It (obviously) is not going to be the mainform, but it must be created before any
other form.



FlashFiler Terminology

It helps to become familiar with the FF terminology to not only save confusion but also to
help for when you are posting messages to the news group for the support you will
undoubtedly need. This is meant to supplement, not replace, the terminology given in chapter
2 of the FF manual.

Term Explanation

Protocol This refers to the communication mechanism used to transmit
data between ffServer and the client applications. There are
three such protocols available and are each described separately
below.

SUP Single User Protocol. This is not to be confused with a single
exe (common mistake). This simply means that the server and
the client app are both on the same physical machine. There can
be as many clients apps booted on this machine making it a true
client server setup. It is also a neat way to run for example a
specialized client app on the server perhaps doing different tasks
from the other network clients.

TCP/IP This is the standard internet protocol which allows any client
app to talk to the server provided they are on the same network.
This is the transport of first choice when connecting to remote
servers. Broadcasting only works on the same subnet.
Connecting to known IPs should always work

Embedded This is where the ffServer engine has been compiled directly
Server into the client application. The advantage of this is that you not
only get a true single exe app with no DLL distribution
headaches but there is no need to use any form of windows
messaging to talk to the server. Consequently embedded server
applications are incredibly fast. They also have the advantage of
the true client server explicate transaction wrappers. These
features mean that these embedded server applications are
actually a better solution than Delphi connected to any other
backend for single exe application development.

ffServer This is the ffServer executable that you must have running for all
your applications except when you are developing an embedded
server app. During development you must remember to always
boot ffServer prior opening the Delphi IDE. When you
distribute your application this is the server engine you should
distribute and copy to the appropriate file server.

ffE This is the FF explorer utility. It is the equivalent of Delphi’s
database desktop. It allows you to maintain aliases and their
associated database tables. Table repair is also usually
performed with this utility.

fTEXP This is a third party utility developed by Otto and can be




downloaded from the third party NG from the TurboPower site.
It is intended to be a cutdown version of ffE (described above)
which you can freely distribute to your end users so they can
perform some limited database maintenance functions. I highly
recommend it as the tool to give to your end users — consider it
the database desktop you would normally distribute with your
Paradox application.

Connection
Manager

This is one heck of a neat component written by Eivind as a
replacement for the legacy transport component. It automates
the connection to an ffServer across up to four protocols. In
principle you need only have a unique name for your server and
this component will do the rest for you. I have used it on DHCP
NT LAN’s and it works like a charm. It is available from the FF
foundry reachable from Yahoo. A must for when you have a
serious application with a multitude of user connections. When
used correctly (that is, as intended by Eivind!) you will not need
the onCreate event handler logic I put into the multi user section
above. This should handle it all for you! (Ben from TP is
currently evaluating it for use in a TP product: ProActivate!)




ffServer

The ffServer has several statistics on its main form that are useful for understanding FF
performance:

Configuring and testing ffServer

The first step is to configure the FlashFiler Server. Boot up ffServer from C:\FF2\BIN, or
wherever you installed FF.

1. Select the Config-Network menu item from the ffServer main menu. The Network
Configuration window displays.

2. Verify that the TCP/IP and IPX/SPX transported are enabled and that the “Listen for
Broadcasts™ option is checked (if that is what you want). Don’t change any of the port
numbers. Click the OK button when done

3. Select the Config-Aliases menu item from the ffServer main menu. The Alias
Configuration window displays.

4. Verify that your aliases are defined correctly. If you specified a directly that does not
exist then its field in the grid will display with a red background colour. Click OK
when done.

5. Verify that the ffServer is started. In the transport list in the lower half of the window,
the transport status should be “Started”. A “Failed” or “Driver not installed” status
indicates some other kind of problem.

The second step is to verify you can connect to the ffServer using FlashFiler Explorer on the
same machine. Start FlashFiler Explorer and switch between the TCP/IP and IPX/SPX
transports using Options — Transport menu items in FlashFiler Explorer. This will verify you
can at least see the ffServer from the same machine.

The third step is to verify you can connect to the ffServer from a different workstation via
FlashFiler Explorer. When FlashFiler Explorer starts, it sends out a broadcast for available
servers. Both the TCP/IP or IPX/SPX transports should show the ffServer on the other
machine. Be sure to try out both transports in FlashFiler Explorer.

Messages

This counter lets you see how many messages have been sent to the server, and messages are
usually the best place to optimize for performance. By resetting the counters and performing
a specific operation on your client you can see the exact number of messages being created.
If you want to see exactly what is being messaged back and forth you can turn on debug login
and review what the server is being asked to do (warning: debug login really shows things
down, it should only be used for debugging or profiling). Watching message counts is useful
because it builds awareness of what your design is actually doing in a C/S perspective.
Message counts also give you a quantitative measure of your process efficiency.



Messages/Second

This is useful for looking at long-winded processes where an exact message count isn’t as
useful as a “throughput” measure. Essentially you want to maximize the messages/second.
Network latency can have a huge impact on this value. Consider a ping time of 50msecs
between the client and the server, this means that no matter what you do you can’t push more
than 50 messages per second throughout your network. When you can predict these barriers
you can make wise choices, such as batch operations to retrieve or insert a large number of
records in a single message.

AV. Time Message

This is a great indicator of how hard the server is working. By reporting the average number
of milliseconds each client request takes it gives an excellent measure of “work” the server is
doing. Difficult and complex operations will cause this number to rise. An interesting
relationship also exists between this number and the Messages/Second above. The product of
theses two values is the number of milliseconds in each second that the ffServer is busy,
giving a great tool to determine the average load on the server. If your server load is low (ie
less than 100 or 10%)

Garbage Collection

When garbage collection runs, it does the following (see TffServerEngine.seCollectGarbage
in unit FFSRENG):

e Removes unused server-side objects (eg, clients, sessions). These are server-side
objects that couldn’t be closed at the time they were told to close or they are tables that
no cursors are currently using.

e Tell the SQL engine to perform garbage collection. Removes server-side SQL engine
objects that are no longer needed.

e Flushes the lock container pool, semaphore pool, and buffer manager memory pools
every 5 minutes regardless of how often garbage collection runs.

Running garbage collection every 30 seconds shouldn’t be a big deal. If you have a system
with a very large number of users than anyone opening a table or database or trying to
establish a connection may notice a slight pause when garbage collection runs, if the two
events occur at the same time. The reason for this is that when removing the unused server-
side objects. It only locks one list at a time. If the server is sent a request to create a new
server-side object (ie, open a table) or free a server-side object (ie, close a database) then the
request must wait until the relevant data structure/s are available.

KeepAlives control this:
LASTMSGINTVAL=x
ALIVEINTERVAL=y
ALIVERETRIES=z

The time before the client is killed is:

x+y*z (milli-sec)



Transactions in FlashFiler

There are two very different types of database updates. An “explicit” transaction is initiated
with a call to StartTransaction followed by whatever Edits, Inserts and Posts are required and
ends with a call to Commit or Rollback. An “implicit” transaction is automatically performed
by the server when Post is called after an Edit or Insert which has not been preceded by a call
to StartTransaction. All transactions should be kept as short as possible and explicit
transactions should never be wrapped around user input.

Implicit Transactions

Implicit transactions use record level locking. An individual record is locked when Edit is
called and this lock is released in the Post. During the Post the server will start a transaction,
post the record to the table, then commit the transaction. The whole table will be locked for
the duration of this implicit transaction but this will be very brief because it only lasts for the
amount of time it takes to post a single record.

FF uses pessimistic locking. Edit obtains an exclusive-write lock on the record. If an Edit is
attempted on the locked record error 10241 occurs.

10241 = $2801 = ERRCAT LOCKCONFLICT: ERRCODE LOCKED
The exception does not tell you which table is involved.

The server retires the second lock request for up to TffTable. Timeout milliseconds. If the
lock is not granted within that time the exception is raised.

The TDataSet class imposes a limit of one record lock per cursor. If you need multiple record
locks you can use direct calls to the (Remote) ServerEngine methods. Only write locks are
supported at the record level.

Explicit Transactions

Explicit transactions use table level locking. Explicit transactions are used when several
records holding related information are being updated together and will ensure they cannot be
left in an inconsistent state. An explicit transaction is initiated by a call to StartTransaction.
Subsequent Edits and Inserts will obtain exclusive-write locks on the relevant tables until the
transaction ends by a call to Commit or Rollback.

Commit has to obtain totally-exclusive locks on the tables it wants to update to prevent any
other access to them. A transaction can only obtain a totally-exclusive lock on a table when
all share-read and exclusive-write locks have been released by other transactions using the
table.

Only the transaction performing the updates will see its alterations before Commit has been
called.

A transaction can obtain a share-read lock on an exclusive-write locked table but only one
transaction can have the exclusive-write lock required to perform Edit, Insert or Delete.
Concurrent transaction are therefore only possible if the transactions are writing to different
tables.



A transaction can stop another transaction committing by acquiring a share-read or exclusive-
write lock on a table it wants to update. In this deadlock one or both of the transactions will
time out.

Undocumented methods TffTable.LockTable and TffTable.UnlockTable add and remove a
table level lock.

There is no server request that returns locking information to the client.

If repeatable reads are required (ie after a dataset reads record A it will always read the same
value) perform the reads inside an explicit transaction because this will prevent any other
transactions updating the table.

A transaction is confined to a directory and managed on a directory basis (an alias points to a
directory and a TffDataBase, which is the owner of a transaction, uses a single alias).

Explicit FailSafe Transactions

An explicit transaction has its own “server cache” in memory on the server. This cache is
only visible to this transaction. All updated records are written to the server cache. Pages of
the cache which have been changed are flagged “dirty” and when the transaction is committed
will be written to the tables on disk. If the power fails when some, but not all, of the dirty
pages have been written to disk the database will be left in an inconsistent state.

To prevent this possibility set TffDataBase.FailSafe to true. As the transaction proceeds clean
“before images” of the cache pages which are about to be updated are written to a Transaction
Journal File (TJF). When a transaction is committed all the dirty pages are written as “after
images” to the TJF and the completed file is closed and flushed to disk. The dirty pages are
then written to the database tables on disk and when complete the TJF is deleted. If the power
is lost the TJF can be used later to automatically complete the transaction.

For a Rollback the dirty cache pages are discarded and the TJF is deleted.



The NewsGroup

Most of the above comes from postings to the FF Newsgroup (NG) by the developers of FF
and expert users, the so-called TPX’ers. You are well advised to read and participate in this
NG. It is the forum for asking questions about FF as well as (usually) the first place where
TurboPower (TP) announce new upgrades and bug fixes. The users of this NG have
developed a unique camaraderie. You will come to appreciate the personalities of most of the
users and may even look forward to adding your own threads.



	Introduction
	A Single Exe Application – The Embedded Server
	Setting up a FlashFiler Comms Data Module
	Creating the FlashFiler Embedded Server Data Module

	Making the single-exe application path independent
	Setting the path on execution of the application

	Caution and final notes

	C/S Applications – Client application separate from the Server
	Setting up a FlashFiler Comms Data Module
	Creating the FlashFiler Embedded Server Data Module

	Making the client executable independent of protocol setting
	Setting the FF server on execution of the application

	Caution and final notes

	FlashFiler Terminology
	ffServer
	Configuring and testing ffServer
	Messages
	Messages/Second
	AV. Time Message
	Garbage Collection

	Transactions in FlashFiler
	Implicit Transactions
	Explicit Transactions
	Explicit FailSafe Transactions

	The NewsGroup

